

Water-resources adaptations call for better downscaling and understanding of extreme precipitation events.

Special requirements:

- Extremes, not means!
- Long enough or numerous enough realizations to support frequency analysis of rare events
- Adequate representations of extreme-event meteorological processes & results

Evaluations/planning for extremes under climate change typically want:

Needs:

- 1. Long-enough or numerous-enough series for extremeevent statistics
- 2. High spatial resolutions in ways that capture extremes
- 3. Realistic storm mechanisms/processes

Strategies:

- 1. Vulnerability (threshold) analysis, with historical examples & scenarios
- 2. Storm-condition focuses
- 3. High-resolution simulations/downscaling
- 4. Statistical downscaling

1. History- or scenario-based Vulnerability Analyses

- Using existing data & resource/mgmt models, map critical vulnerabilities of a city's stormwater management systems
- The question to climate analysts becomes "How likely are these breaking points to be reached in available climate-change projections & by common sense?"
- Uses most-realistic, highest-res data
- "Simply" expands beyond standard design-storm methods
- Infinite range of possibilities to be explored?
- Minimal connections to specific clim-chg projections

Threshold Analysis Approach for CVFPP with Climate Change Considerations

ARkStorm Severe Storm Scenario

25 m s⁻¹ max

wind speed

>10x max 300 mm d⁻¹ max historical precipitation runoff 18 m s⁻¹ max wind speed 550 mm d⁻¹ max >10x max precipitation wind speed 4-5x max runoff wind speed 🦠 600 mm d⁻¹ max precipitation

runoff

15 m s⁻¹ max wind speed

>30 m s 1 max wind speed 4-5x max

runoff

2. Severe-Storm Condition Evaluations

- Focus on the specific storm types that challenge the stormwater systems most (describing them in large-scale meteorological terms rather than "just" by intense simulated precip)
- The question to climate analysts becomes "What sort of changes are projected in frequency & intensity of these storm types?"
- Focuses on best aspects of GCMs (general circulation models)
- Natural extension of historical vulnerability analyses
- Reduces range of possibilities to be explored
- Direct connections to specific clim-chg projections, without undue belief in uncertain details (i.e., specific precip amounts)

CHANGES IN EXTREME-EVENT MECHANISMS MAY BECOME VISIBLE LONG BEFORE CHANGES IN OVERALL EXTREMES ARE RECOGNIZED

Flood frequency analyses of the Santa Cruz R, Tucson, AZ

- Early warning of changes
- GCM-informed sensitivity analyses of vulnerabilities to potential storm changes
- Buying time until projected/downscaled extreme precipitation values are more trusted

"Semi-quantitative characterization" of a particular category of West Coast extreme storm events: Atmospheric Rivers in IPCC AR4 projections

Observations:

Have annual-peak flows become more precipitation-driven (rain- or rain-on-snow fed) than heat-driven (snowmelt-fed) in recent decades?

3. High-resolution Simulations and Downscaling

- Continue along the developing path of "dynamical downscaling," using advances in that field as they emerge
- The question to climate analysts becomes "What precipitation extremes are projected at finest scales obtainable?"
- Provides detailed examples of extremes that might be faced
- Support may be necessary to ensure focus on extremes focus (most focus remains on average changes)
- Direct connections to specific clim-chg projections
- Technology still developing & expensive
- Short RCM simulations provide little basis for freq-analysis of rare extremes

Projected floods in Sierra Nevada(Das et al

16 GCMs, A2 emissions

Southern Sierra Nevada

Change in mean annual flow

4. Statistical downscaling

- Many advantages (speed, bias correction, ...) as well as disadvantages •Full-distribution bias corrections?
- Revisit/revalidate/redesign statistical dscaling with extreme, rare events as

focus (figures are just simple illustrn of how this might look)

(b) SQUARE ROOT of WOODFORDS DAILY PRECIPITATION

O 1960-72 Observations

 1960–72 Raw PCM 2048-99 Mapped PCM

1960–72 Mapped PCM

SQRT(millimeters)

Needs:

- 1. Long-enough series for extreme-event statistics
- 2. High spatial resolutions in ways that capture extremes
- 3. Believable storm mechanisms/processes

Strategies:

- 1. Vulnerability (threshold) analysis, with historical examples & scenarios
- 2. Storm-condition focuses
- 3. High-resolution simulations/downscaling
- 4. Statistical downscaling