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Intensity - Duration - Frequency (IDF) Curves *

What is our expectation of
1) How much, 2) Over what time interval, 3) How often ?

* Note: Often show accumulation rather than intensity
(sums versus rates)

Much, much scrutiny
Very widely used
Critical for infrastructure design
Scientific, legal, financial underpinnings

These and other climatic extremes built into building codes
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Extremes matter
Societal physical and behavioral infrastructure are built around:
Central tendencies -the many
High probability / low consequence events
Distribution tails - the few
Low probability / high consequence events
Huge societal investments ($B, $$B, $$$B) to withstand rare events
Where do we obtain these probabilities?
Pertinent decisions are about the future: hence, these are forecasts
The commonsense assumption: Pastis Prologue
The past as a reliable guide to the future
Past statistics = Future statistics
The past (as established “fact”) has built-in credibility as a forecast

Automatic, relatively painless buy-in
Climate stationarity is implicit in this assumption




Two major audiences to satisfy:

Scientific
What is intellectually defensible, accurate, correct?

Societal
Acceptance by the engineering profession
Methodologies that are understandable, transparent, etc
Practical and implementable
Acceptance by the planning community
Huge $$$ at stake in building for extremes
Acceptance by political process

For both audiences

Stationary climate
Reasonably constrained range of options
Considerable experience base to work from

Nonstationary climate
Many more possible options to choose from

Lots of ways to “be nonstationary”

Experience base very limited

Not “just” a science problem, but a joint science-society problem



Stationarity
There does not seem to be a uniform meaning for this word
Often used in a statistical sense

Values that are i.i.d.
independent and identically distributed
- each new event independent of the last
- always drawn from the same statistical distribution(s)

In a physical sense

The causal mechanisms in the physical world

(that generate the statistics) continue to occur, and to
interact with each other, in approximately the same manner,
over the time period for which stationarity is claimed.

However, in the physical world, the temporal characteristics of
physical causation are constantly changing, all the time,
on all time scales

Stationarity concept must contain embedded implicit time scales



The climate system as an operator
y =f(x), where x is input, operated on by f, with output y
s = H(ppt; parameters), where

ppt falls as input from sky (rain or snow) ...
... is operated on by Hydrologic system H ...
... with output s (some kind of hydrologically relevant quantity)

s could represent streamflow, lake level, groundwater status, etc

H

is not linear in ppt

is sometimes simple, usually very complex, often extremely complex

is dependent on many parameters representing state of system
Some of these themselves depend on the climate system (feedbacks)
Some of these are externally manipulated (e.g., human activities)

could be natural (catchment, basin, major river system, lake, etc)

need not be “natural”’ (roof, parking lot, tailings pond, alfalfa field, etc)

acts as a kind of complex time filter

Variability in output s may result from variability in input ppt or in H or both
That is, nonstationarity in s could result from driver or system nonstationarity

Rarity of input ppt need not produce same rarity in output s
25 year precipitation event need not produce 25 year hydro event
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Maximum Flow ( KCFS )

American River @ Fair Oaks (Sacramento CA)
Annual Maximum Three-Day Average Flow
Reconstructed Natural Flow below Folsom Reservoir

180
160
140
120
100
80
60
40

SEE T

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Water Year



National Research Council

January 1999

FIGURE 1.1 Main features of the American River hed. SOURCE: District, USACE, 1991.
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Hydrology Subcommittee

Revised September 1981
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LIS Department of the Interior

Office of Water Data Coordination
Reston, Virginia 22092




South Coast Region

Precipitation Jul-Jun
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95t Percentile (of non-zero precip days)
eg, this is x,, (to be discussed)

What is the behavior
of the tails of distributions?

Peaks over threshold method.
Distribution of:
Excess over threshold.

= 1
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Note:
Typical distributions with exponential tails:

Binomial

Normal

Lognormal

Gamma

Gumbel

Weibull

Double (or Stretched or extended ) exponential

Typical distributions with heavy tails:

Pareto
Cauchy
Frechet
Stable laws



Pareto Distribution

If Xis arandom variable with a Pareto distribution, then the probabilty that Xis greater than some
number xis given by

)

(?"‘)a for x > xp,,

Pr(X > x) =

for x < x,,.
Applies to
Frequency diStribUtion Of Wealth e The expected value of a random variable following a Pareto distribution with o= 1 is
. “gm (83005
Sizes of cities E(X)=—
Sizes Of internet files (if x=1,the expected value does not exist).

¢ The variance is

Sizes of Bose-Einstein condensate . \2 «
clusters var(X) = (a = 1) a—2

(If x= 2,the variance does not exist).

Sizes of sand grains

¢ The raw moments are

Sizes of meteorites ;o Q@
#‘n - ’
. . a—"n
Sizes of forest fires but the rth moment exists only for »< a.

Sizes of insurance losses
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A random variable that follows a heavy tailed distribution (such as Pareto)
can be extremely large with non-negligible probability

Pareto, alpha =1

Pareto, alpha = 2

\ Pareto, alpha =3
Pareto, alpha = infinity (exponential)

“The biggest one is yet to come.” -Jim Goodridge CA DWR
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Alpha Parameter of Rainfall Distributions in San Jose

Pareto alpha
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Monthly Precip
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Simulated PDF's of L L = In (likelihood ratio)
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Figure 1 (from Panorska et al. 2007). The graph contains & boxplots of simulated distributions
of L. The first five boxplots were done using 10,000 observations of L from Pareto samples of
size 1,000 with o varying from 0.5 (first boxplot) to 5 (second to the last bozplot). The last
boxplot corresponds to 10,000 observations of L from exponential samples of size 1,000, The
inset blows up the last two boxplots.




Redder = heavier tails

Log likelihood ratio test statistic (L), all data
a) L values, absolute magnitude b) L values, H, rejection certainty in %
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Figure 2 (from Panorska et al. 2006). Log likelihood ratio (L) computed for daily excesses over
local 75t percentile at each of the 560 stations. (a) Values close to zero, L <=1 (blue and green
x’s) represent approximately exponential tails, while yellow, red and black circles represent
progressively heavier tails. (b) Level of confidence, (1 - v)*100, for rejecting the null hypothesis
(H,) of exponential tails. Blue x’s represent exponential tails, green x’s represent stations at
which the H, cannot be rejected with reasonable (90%) confidence. Yellow and progressively
redder circles represent stations at which H, can be rejected with 90, 95, 98 and 99% confidence

in favor of the Pareto alternative. For example, H, can be rejected at 81% of stations with 95%
confidence.

Percentiles are for days with measurable precipitation. A.P. tried 50-95 percentile.



Snowfall

Values from
Kunkel et al

Same for the quality controlled larger station subset — 1124 stations.

This was done with a flexible choice of three thresholds (80, 90t and 95% %-iles used in
the peaks over threshold approach, see Panorska et al. 2007 for details) and six

confidence levels ranging from 0.005 to 0.1.
e Small green circles represent heavy tails outcome for at least one threshold choice

at lowest confidence — happens at 30% of the stations
e Larger blue circles represent heavy tails outcome for at least half of the possible

threshold/confidence choices
e Bigred circles represent heavy tails all around — this happens at 10% of the

stations



Snowfall o

Values from
Kunkel et al ¥

-120 -110 -100 -90 -80 -70

Same thing with reasonably-sized circles. Here, we can better see that heavy tails are
observed only at a minority of stations, even in the northern Plains and the Mid-West,
where much of the heavy-tailed behavior is observed.

On the whole, depending on threshold and significance level choice, snow accumulations
at 10 — 30% of stations are heavy tailed. This is consistent with the result of Panorska et
al. 2007 (figure 3a) where all precipitation (SWE in case of snow) at 37% of North
American stations was estimated as heavy tailed in DJF using the 80t %-ile threshold
with 95% confidence. Also, the spatial pattern of snow accumulation heavy tails
generally agrees with the spatial pattern of wintertime heavy precipitation tails.



Panorska, Gershunov, Redmond
PRECIPITATION STATISTICS AT SELECTED STATIONS

Station Log P[p > 0] | 75% %-ile(p,=0) | Maxys(p) | 100-yr event Pareto
likelihood Exp and Pareto | P[p > Pex!™]
ratio (L) (%0) (mm) (mm) (mm) (%0)

Sacramento | 1.60 16 10.7 96 85 and 99 2.3

Nashville 3.15 26 16 153 127 and 154 3.4

St. Louis 4.93 30 11.2 142 114 and 144 4.1

Houston 15.2 27 16.3 253 195 and 292 6.5

Fargo 28.6 27 5.8 118 85 and 167 12.0

Miami 41.8 36 13.7 377 181 and 346 9.8

Table 2. Precipitation statistics at selected stations for the common observational period 1950 —
2001: L; probability of precipitation (i.e. % of days with recorded precipitation); 75t percentile of
daily total on days with precipitation; maximum recorded daily total, the estimated 100-year
event assuming exponential and Pareto tails; and the Pareto probability of exceeding the
exponential 100-yr event. The last column can be interpreted as the factor by which the 100-yr
event estimated assuming exponential tail is more likely to occur assuming Pareto tail
Alternatively, the Pareto return period for an exponential 100-yr event is 100 years divided by the

years (100/9.8).




General Info
Homepage
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FAQ
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PF Data Server
PF Documents

Probable Maximum
Precipitation (PMP)

PMP Documents

Record Precipitation

Contact Us
Inquiries
List-server

“USA.gov.

Governmant

Home Site Map

NOAA Atlas 2 Precipitation Frequency Estimates
in GIS Compatible Formats

Note: Effective August 6, 2003, NOAA Atlas 2 has been superceded by NOAA Atlas 14 for Arizona, Nevada,
New Mexico, Utah and southeastern California. Visit the Precipitation Frequency Data Server for more

information.

This web page provides access to high-resolution {15-sec) NOAA Atlas 2 precipitation frequency grids for 2-year
and 100-year average recurrence intervals and for 6-hour and 24-hour durations for 7 states in the western U.S.
(part of California, Colorado, Idaho, Montana, Oregon, YWashington, Yyoming).

To view a scanned version of current NOAA Atlas 2 document for a specific state, please visit our PF

Documents page.

To view a complete set of scanned maps from NOAA Atlas 2, visit the Western Regional Climate Center page.

Organization

= PRECIPITATION FREQUENCY ESTIMATES AT A POINT

To obtain the precipitation frequency estimates at a given point, enter the latitude and longitude (as a

negative number) in decimal degrees:

Latitude: |46.6056 Longitude: |—1 11.9636

WYY NWS N0aa.goy |

“\ﬂlq(

search [ © vws ® annoan [N

= PRECIPITATION FREQUENCY GRIDS

These spatial data sets are provided in an Arcinfo ASCII grid format. Please read the metadata hefore
making any use ofthe datasets.

The files can either be downloaded via pull-down menu or anonymous ftp:

1) Via pull-down menu:

IWestem us. ~| | 2-year, B-hour

~| Download I




For Helena MT ASOS Location

Precipitation Frequency Data Output

HOAA Atlas 2

Montana 46.6056°H 111.9636°W
Site-specific Estimates

| Map |  Precipitation (inches) | Precipitation Intensity (in/hr)
| 2-yearé-howr | 0.71 | 0.12
| 2-year24-howr | 1.25 | 0.05
| 100-year 6-howr | 1.69 | 0.28
| 100-year 24-howr | 2.81 | 0.12

Hydremetecrclogical Design Studies Center - NOAANaticnal Weather Service
1325 East-West Highway - Silver Spring, MDD 20910 - (301) 713-1669
Pri Jul 23 15:26:20 2010

Using AZ example and ratios
100/2 = 2.3, so est 100yr =2.75"
10/2 = 1.5, so est 100yr = 1.87”



To obtain more information or the text material that accompanies these maps contact the Western Regional Climate Center at 775-674-7010

At WRCC: www.wrcc.dri.edu/pcpnfreq.html

Western U.S. Precipitation Frequency Maps

Source: NOAA Atlas 2 published in 1973. (HDSC/NWE Office of Hydrology)
Note: To maintain image integrity and detail each image is almost 1 VB in size.
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More detail ... 10-year 24-hour precipitation in tenths of inches
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NOAA's National Weather Service

Hydrometeorological Design Studie

General Info
Homepage
Current Projects
FAQ

Precipitation
Frequency (PF)

PF Data Server
PF Documents

Probable Maximum
Precipitation (PMP)

PMP Documents
Record Precipitation

Contact Us
Inquiries
List-server

Site Map

News

Organization

Welcome to the Hydrometeorological Design Studies Center

(HDSC)

HDSC prepares PRECIPITATION
FREQUENCY estimates for the Federal
Government and provides related
documents on this site.

Since 2003, HDSC has been updating
precipitation frequency estimates as
volumes of NOAA Atlas 14. HDSC has a
list-server to distribute progress reports on
current projects and occasional
announcements.

HDSC discontinued PROBABLE
MAXIMUM PRECIPITATION activities due
to lack of funding, but copies of related
NWS documents could be found on this
site.
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General Info
Homepage
Current Projects
FAQ

Precipitation
Frequency (PF)

PF Data Server
PF Documents

Probable Maximum
Precipitation (PMP)

PMP Documents
Record Precipitation

Contact Us
Inquiries
List-server

USA.g

Governmar l rn,

NOAA's National Weather Service" o

(\/ Hydrometeorological Design StudiesH

Home

1. PF documents

1.1 PF documents by state/territory and duration

Site Map

1.2 PF documents by title

2. PF related studies

News

Current NWS Precipitation Frequency (PF) Documents and Related Studies

Viewing the documents requires the Adobe Acrobat Reader (click here to download).

1. PF documents

1.1 PF documents by state/territory and duration

Organization

HDSC
Precipitation
Frequency
Status of
Products

As of

2011 May 19

State/Territory

Duration (D)

D<(<)1hr

1hr=(£)D=<24hr

D> 24 hr

Contiguous U.S.

Alasbams Tech Memo HYDRO-25 (1977) | Technical Paper 40 {1981) Technical Paper 49 (1964)
Arizona NOAA Atlas 14, Vol 1 {2004) NOAA Atlas 14, Vol 1 (2004) NOAA Atlas 14, Vol 1 {2004)
Arkansas Tech Memo HYDRO-25 (1977) | Technical Paper 40 {1981) Technical Paper 49 {1964)
Californis NOAA Atlss 14, Vol 8 (2011) | NOAA Atlss 14, Vol & (2011) g?:ﬁ:ti':srd:f Vol 6 (0 TH=
Colorado Arkell & Richards {198€) NOAA Atlas 2, Vol 2 (1972) Technical Paper 49 (19€64)
Connecticut Tech Memo HYDRO-25 (1977) | Technical Paper 40 (1981) Technical Paper 49 {1964)

Delaware

NOAA Atles 14, Vol 2 (2004)

NOAA Atlas 14, Vol 2 (2004)

NOAA Atlas 14, Vol 2 (2004)




Potential sources of heavy precipitation:
Frontal passages

Cyclonic storms

Orographic uplift

Tropical storms

Convergence zones
Embedded cumulus
Atmospheric rivers

Blocked atmospheric patterns
ENSO conditioning

MJO activity

Human effects (?)
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World and United States Record Precipitation By Duration. NOAA HDSC.
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To produce precipitation, and heavy precipitation:

It is not sufficient that there be abundant atmospheric moisture (humidity).
The main issue is that there must be a mechanism to wring out moisture.

(Examples: Sudan, Kuwait)

It is also not necessary that there be abundant atmospheric moisture.
If dry, there must be advective mechanisms to replenish moisture.

(Example: Heavy winter snows near Lethbridge/Banff at -20 F)

Heavy precipitation can result from
Abundant local moisture
But almost always also requires (especially at time scales > a few hours)

Replenishment and import as local supply is consumed



Z Score

Verde River. Reconstructed Flow. 572-1985 A.D.
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Redmond, K.T., Y. Enzel, P.K. House, and F. Biondi, 2002. Climate variability and flood
frequency at decadal to millennial time scales. pp. 21-45, in Principles and Applications
of Paleoflood Hydrology, editors: P.K. House, R.H. Webb, and V.R. Baker, American
Geophysical Union, 385 pp.
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“Stationarity is dead” *
Stationarity was never really fully alive.
“The history of climate is a nonstationary time series.” *

Corollaries:
There are no true climatic “normals”.
We never know enough. We can never stop observing.

* P.C.D. Milly, Julio Betancourt, Malin Falkenmark, Robert M. Hirsch, Zbigniew W.
Kundzewicz, Dennis P. Lettenmaier, Ronald J. Stouffer, 2008. Stationarity is dead:
Whither water management?. Science, 319 (5863), 573-574, 1 Feb 2008.

Reid A. Bryson, 1997. The Paradigm of Climatology: An Essay. Bulletin of the American
Meteorological Society, 78(3), 449-455.

Stationarity, if even alive, is not feeling well ... “under the weather”

Climate change: The “present future” will slowly depart from its “prior future”
Stationarity slowly but progressively becoming a less valid assumption
Evidence points this way ....... but is not completely unambiguous
How much until this departure is “significant” ?
(not so much in statistical terms, but in practical terms)
How do we adjust all the statistics of the past to reflect the expected future?



A thought experiment

Suppose we had a perfect (complete and accurate) observed time series of a climate
element indefinitely far back into the past from a location of interest.
e.g. 1-minute measurements for the last 100, thousand, 10000, 100000, million years

We wish to make a decision about some future time interval
The expected lifetime of a culvert
The expected lifetime of a railroad bridge
The expected lifetime of a waste settlement lagoon
The expected lifetime of a major dam
In many cases, the interval may consist of the time until we next revisit the issue
(because human infrastructure is constantly being reshaped for many purposes)

The big question :
What part of the past is relevant to what part of the future?
How many years would we go back, for a decision related to how many years in the future?
The usual answer:
There’ s never enough data.

Beggars can’ t be choosers.
More is always better.



Karl and Knight, 1998. Fraction of annual total from upper 10t" percentile, US Average.
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Fic. 2. Time series of the percent contribution of the upper 10 percentile of daily precipitation events to the total annual precipitation
area-averaged across the United States. Smooth curve 1s a nine-pomt binomual filter, and the trend 1s also depicted.



3 .

Trends in Extreme Daily Precipitation, 1910-1996, by category.

Thomas R. Karl and Richard W. Knight, 1998. Secular Trends of
Precipitation Amount, Frequency, and Intensity in the United States.
Bulletin of the American Meteorological Society , 79 ( 2), 231-241.
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Contribution to change
in total precipitation
from different intensity
classes.

1910-1996.

-- The intensity of
precipitation has increased
for very heavy and extreme
precipitation days only.

-- The proportion of total
annual precipitation derived
from heavy and extreme
precipitation events has
increased relative to more
moderate precipitation.



Trends in heavy (5 pct), very heavy (1 pct), and extreme (0.1 pct) daily precipitation.
1910-1999, USA.

TasLE 1. Trend characteristics in annual precipitation totals: in heavy (upper 5%). very heavy (upper 1%). and extreme (upper 0.1%
of daily rain events) precipitation totals: and in the fraction of total precipitation occurring in heavy. very heavy, and extreme
precipitation events over the contiguous United States, 1910-99. Asterisks (*) indicate trends that are statistically significant at the 0.05

or higher level.

Annual precipitation Contribution to annual totals
Linear trend Relative change
Mean value Estimate Variance Estimate Variance

Precipitation (mm) [% (10 yr)~'] (%) Fraction [% (10 yr)~!] (%)
Total 750 0.6 b 1.00

Heavy 195 1.7 12% 0.26 1.0 20%*
Very heavy 62 2.5 By 0.08 1.9 17
Extreme 12 33 11> 0.016 2.7 g%

Pavel Ya. Groisman, Richard W. Knight, David R. Easterling,
Thomas R. Karl, Gabriele C. Hegerl, and Vyacheslav N.
Razuvaey, 2005. Trends in Intense Precipitation in the Climate
Record Journal of Climate, 18 (9), 1326—-1350.



Trends in number of days with heavy (5 pct), very heavy (1 pct), and extreme (0.1 pct) daily
precipitation. 1910-1999, USA.

TaBLE 2a. Trend characteristics in the number of days with heavy and very heavy precipitation over the contiguous United States,
1910-99 (percentile definition). Asterisks (*) indicate trends that are statistically significant at the 0.05 or higher level.

Contribution to total days with

Days with precipitation precipitation above 1 mm
Linear trend Relative change
Mean Estimate Variance Estimate Variance
Events (days yr=')  [% (10 yr)™1] (%) Fraction [% (10 yr)™'] (%)
Total days with precipitation above 1 mm = 0.5 6* 1
Heavy (upper 5% of precipitation events) 44 1.5 12* 0.06 1.0 1*
Very heavy (upper 1% of precipitation events) 0.88 22 14* 0.012 1.7 13%

Pavel Ya. Groisman, Richard W. Knight, David R. Easterling,
Thomas R. Karl, Gabriele C. Hegerl, and Vyacheslav N.
Razuvaey, 2005. Trends in Intense Precipitation in the Climate
Record Journal of Climate, 18 (9), 1326—-1350.



EPl Anomaly (%)

40 y
20 4 IJ\['{‘
0 +-

‘\',h ; '/\ +

1895 1910 1925 1940 1955 1970 1985 2000
Year

Figure 2. Time series of anomalies of the Extreme
Precipitation Index, expressed in %, for various combina-
tions of duration and return period. The time series have
been smoothed with a 7-yr moving average filter. Retum

periods of 1 year (red), 5 years (blue), and 20 years (orange)
are plotted on each oranh i IR
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Tl P05

Figure 1. Location of stations with less than 10% missing
daily precapitabon data for 1895-2000. The symbol “o” (in
blue) indicates that Jong-term data were avalable prior w
CDMP while the symbol *x* (in red) indicates newly
available long-term stations.

Extreme Precipitation Index
United States

1895-2000.

Selected durations

And

Return periods (1, 5, 20 yrs)

(Station density effects removed)

Ken E. Kunkel, Dave R. Easterling,
Kelly T. Redmond, and Ken G.
Hubbard, 2003.

Temporal variations of extreme
precipitation events in the United
States: 1895-2000.

Geophysical Research Letters,
30:1717.
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Extreme Precipitation over the West Coast of North America: Is

There a Trend? J. Hydrometeorology. 10.1175/2010JHM1341.1
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Figure 3: Sixty-year trends for the top 60 events for all stations (a) and for averages of
the stations over 2° latitude bands (b). The trends are given in percent change relative to
the mean over the 60-year period. The vertical dotted lines indicate the state boundaries
and the brackets indicate the 95% interval derived from using formula (1).

Figure 4: Sixty-year trends for the top 20 events for all stations (a) and for averages of
the stations over 2° latitude bands (b). The trends are given in percent change over the
60-yr period. The vertical dotted lines indicate the state boundaries and the brackets
indicate the 95% interval derived from using formula (1).

Cliff Mass, Adam Skalenakis, Michael Warner, 2011.
Extreme Precipitation over the West Coast of North America: Is
There a Trend? J. Hydrometeorology. 10.1175/2010JHM1341.1
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Figure 5: Sixty-year trends (mm per year) for the maximum annual two-day precipitation
for coastal locations from southern California to British Columbia. The vertical dotted
lines indicate the state boundaries and the brackets indicate the 95% confidence interval
derived from using formula (1).
Cliff Mass, Adam Skalenakis, Michael Warner, 2011.

Extreme Precipitation over the West Coast of North America: Is
There a Trend? J. Hydrometeorology. 10.1175/2010JHM1341.1



West Coast Streamflow. Annual Series of 1-Day Maximum Discharges.

Number of events per decade. Trends 1950-2009.
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Figure 7: Decadal variation of the top 20 and 60 average daily discharges for 1950-2009
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Satellite Winds and Waves

Increasing Number of Waves eei»

7 satellites since 1985, analysis thru 2008

GEOSAT difficulties with wind, so record starts 1991, thru 2008
Separate distributions each month, thus, seasonal cycle to remove

1 billion altimeter observations, 90,000 per 2x2 deg grid, 300 per month
Very well correlated with buoy data of wind and waves

RMS error of satellite-derived waves less than 0.2 meter

RMS error of satellite-derived winds less than 1.5 m/s for 10-m wind

Rayleigh distribution, Hs=10 m: .1 >10.7 m, .01>15.1 m, .001>18.6 m

Statistical Wave Distribution
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Figure S6: Colour contour plot of mean monthly wind speed trend (% per annum) from the
NCEP/NCAR reanalysis data (25). Points which are statistically significant according to the
SK test are shown with dots. This figure can be directly compared with Fig. 1.
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Table 1

Comparison of trend estimates for buoy and altimeter data. The top panel shows wind speed and the bottom panel shows wave height,
with the locations grouped by geographic region. Bold values are statistically significant at the 95% level (bold and underscored) and at
the 90% level (bold) where two significance tests were passed (the normal distribution and the homogeneity test) (SOM).

Region

Gulf of Mexico

‘North Atlantic

‘North Pacific

Hawaii

Gulf of Mexico

‘North Atlantic

‘North Pacific

Hawaii

Buoy no.

42001
42002
44004
44011
41002
46001
46002
46005
46006
46035
51001
51002

42001
42002
44004
44011
41002
46001
46002
46005
46006
46035
51001
51002

Latitude
(°N)

259
2538
385
411
324
53.3
426
46.1
40.9
571
235
171

259
258
385
411
324
53.3
426
461
409
571
235
171

Longitude
(°w)

89.7
93.7
704
66.6
754
148.0
1305
131.0
1375
177.8
162.3
157.8

89.7
937
704
66.6
754
148.0
1305
131.0
1375
177.8
162.3
157.8

Mean
1.79
1.88
4.01
0.48

2.90
1.99
4.02
3.52
5.62
2.86
212

r

Buoy trend
(cmislyear)

90th

0.00
0.50
0.40
111
0.00
0.00
0.00
0.00
1.25

-0.95

-0.71
0.00

Altimeter trend
(cmislyear)

90th
4.50
0.00
2.41
2.16
2.21
7.46
5.25
5.50
3.33

—0.61
277
363

0.43
0.24
0.51
1.64
-0.02
1.24
0.58
1.67
0.24
0.84
—0.95
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Soda Springs Store
March 27, 2011

Tom Knudson
Sacramento Bee
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South Central Sierra Snow Lab East

Photo: Dave Simeral




sond (@) 13 Oct 2009 p.m. composite

Atmospheric

375 mm
in24 h

A Key HMT Finding:

- atmospheric rivers are a key
to extreme precipitation and
flooding, as well as water
supply and stream flow on
the U.S. West Coast

Examples of AR events that produced
extreme precipitation on the US
West Coast, and exhibited spatial
continuity with the tropical water
vapor reservoir as seen in SSM/I|
satellite observations of IWV.

Thanks to Marty Ralph



November 6-7, 2006. One storm, three state daily precipitation records !!!
Never in U.S. history have two state records been set on the same day.

Preliminary State-Record Maximum 24-Hour Precipitation

New Record: June Lake, Washington, elevation 3,340 feet 15.20 inches on November 6-7, 2006
Former Record: Mt Mitchell, Washington, elevation 3,600 feet 14 26 inches on November 23-24, 1986
New Record: Lee’s Camp. Oregon, elevation 660 feet 1430 inches on November 6-7, 2006
Former Record:  Port Orford. Oregon. elevation 150 feet 11.65 inches on November 19, 1006
New Record: Bear Mountain, Idaho, elevation 5.400 feet 0 40 inches on November 6-7. 2006

Former Record: Rattlesnake Creek. Idaho. elevation 4,000 feet 7.17 inches on November 23, 1009
LG

&P 4 yy - A9
e AN 57

Old records broken by
23 % - Oregon

06 % - Washington
31 % - ldaho
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Many Glacier Lodge
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500

Another
view

P - E Trends (mm/year/decade)

-500

Fig. 3. Trends in satellite-derived P — E for the period July 1987 through August 2006. The largest
change was over the warm pool in the western Pacific: a wet area that became wetter.

Table 1. Statistics on the variation of global evaporation, global precipitation, and over-ocean
water vapor for the period July 1987 through August 2006. The error bars on the trends are given at
the 95% confidence level. The values in parentheses are in terms of percentage change, rather than
absolute change.

Parameter Mean Standard deviation Trend

Evaporation 961 mm year " 10.1 mm year * (1.1%) 12.6 + 4.8 mm year - decade ™"
(1.3 + 0.5% decade™)

Precipitation 950 mm year* 12.7 mm year * (1.3%) 13.2 + 4.8 mm year * decade™
(1.4 + 0.5% decade™)

Total water 28.5 mm 0.292 mm (1.0%) 0.354 + 0.114 mm decade™
(1.2 + 0.4% decade™)

Frank J. Wentz, Lucrezia Ricciardulli, Kyle Hilburn, Carl Mears, 2007. How much more rain
will global warming bring? Science, 317, 233-235.




The World’ s Warm Oceans




Thru February 2011
Typically “El Nino”
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Typically “La Nina”

Courtesy Klaus Wolter & Mike Timlin,
NOAA Climate Diagnostics Center
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Recent Evolution of Equatorial Pacific SST Departures
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Split Samples:

Jun-Nov SOl vs. Oct-Mar Precip Redmond & Koch,

Washington statewide October thru March Precipitation

SOl >= +0.50 minus SOl =<-0.50

(versus Southern Oscillation Index for prior June - November)

1991, updated.
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South Coast California October thru March Precipitation
(versus Southern Oscillation Index for prior June - Novernber)
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Tahoe City / Sacramento Ratio

Ratio of June thru July Precipitation
Tahoe City / Sacramento. 1909-10 thru2000-01.
Blue: 7-year running mean.
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American River at Fair Oaks Maximum 3-day Flow Each
Winter (Daily Average) Adjusted Natural Flow

(versus Southern Oscillation Index for prior June - November)
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Top 10 % Winter
Precipitation
Events

Predominance:
Red - El Nino

Blue — La Nina

Top 50 % Winter
Precipitation
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Thru February 2011
Typically “El Nino”
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Positive Negative Mat"t:Ja
et al.

PDO index values for 2009

January -1.40
February -1.55 4
March -1.59
April -1.65 2
May -0.88
Ctsy

Nate Mantua _»

monthly values for the PDO index: Jan 1900—Feb 2003
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Percent change in annual precipitation and in amount on wettest day of the year,
when both models agree on sign. 2 x CO2. Canadian Model 1 & Hadley Model 3.

Annual amount
% change in ann ave precp, consensus

Wettest day

% change in wettest day/yr, consensus
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FiG. 13. Consensus estimates of changes in mean annual precipitation in the 2 x CO,
expeniments from CGCM1 and HadCM3 GCMs over North America. The red end of the scale
depicts decreases and the blue increases. The pattern shows the average precipitation change
between the models, it is only shown where the simulations with each model are consistent
with the respective other model at the gridpoint level.
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Pavel Ya. Groisman, Richard W. Knight, David R. Easterling,
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Record Journal of Climate, 18 (9), 1326—-1350.



GFDL 2.1 A2 Emissions Scenario
Ratio of Maximum Daily Precipitable Water (SRESA2 2071 to 2100 / 20C3M 1961 to 1990)

Note: Precipitable waters derived from model specific humidity, 20C3M = mean of ensembles 2,4,5
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GFDL 2.1 A2 Emissions Scenario

Ratio of Maximum Daily Precipitable Water (SRESA2 2071 to 2100 / 20C3M 1961 to 1990)
Note: Precipitable waters derived from model specific humidity, 20C3M = mean of ensembles 2,4,5
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Urbana lllinois IDF Curves and Probable Maximum Precipitation
Present and Future Estimate from Clausius-Clapeyron Considerations

IDF Curves - Urbana, IL IDF Curves - Urbana, IL

PMP with Clausius—Clapeyron

N WbhO N O

0.5
0.4
0.3

0.2

adjustment for warming

Precipitation Intensity (in/hr)

30-min

=
-
~
=
>
by —
w
o=
PMP Q
=
-
500-yr 207-
100-yr ©
25-yr 305' PMP
S-yr ‘O 0.4 -
9031
o
0.2 -
AN N N N (NN N NN NN S NN N _—
£ EE =x rx E EE X2 3 A
T o ORES N EN B9 Y EE £E EE EE Z
o, o ™
© e Duration C'OQS C{l “')g' gg -?
b, T X c()

Duration



Difference in extreme event precipitable water:
1982-2009 minus 1961-1981



Some issues for consideration -1
How adequate are our observing systems to record the extremes of interest?

How adequate is our tracking of extremes?
Ability to notice changes with relatively little delay
Helps contribute to awareness of “changing extremes” possibilities

Extremes in hydrologic drivers versus extremes in hydrologic response
Hydrologic systems as “filters”
Land use change as an example
Agriculture
Urban and impermeable surfaces
Same atmospheric sequence may not produce same hydro
consequences

How well do / can models represent the properties of extremes?
Ability to represent the entire probability distribution
Ability to represent return intervals correctly
Can models produce heavy-tailed distributions

Wet hydrologic extremes on short time scales exhibit heavy tails
We may be underestimating the size and frequency of rare events

Oroaraphic ratio connections to larae scale climate



Some issues for consideration - 2
Atmospheric rivers as a weather - climate connection

Better understanding of MJO (Madden-Julian Oscillation) relationships to
ENSO and other oscillations
West Coast heavy precipitation probabilities
Windows of opportunity that may or not be realized (as heavy precip)

Multi-day duration episodes
Slow-moving cutoff systems
Sequences of multiple rapidly translating systems

The importance of a few singular events
Increases from north to south
Lack of a few events sets the stage for drought

Effect of non-precipitation hydrologic elements
Changes in hydrologic events resulting from changes in temperature

Decadal-scale climate variability of extreme event likelihood

Social science investigations relating to risk perception
Improved societal appreciation/understanding of probabilistic concepts



“The improbable is bound to happen one day.”

- Emil Gumbel

“The biggest one is yet to come.”

- Jim Goodridge
CA DWR
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