


Short period events matter greatly.
Coincidence of different factors, e.g. high tides, big storms, 1s key
Storm track might migrate poleward.

Estimates of potential global sea level rise have increased over
last few years

Interannual-decadal Pacific basin atmosphere/ocean fluctuations have
large impacts.

In some settings, fresh water flooding compounds sea level extremes

They rarely occur, but tropical storms can make landfall in California
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Climate models only provide loose
guidance on the amount of sea level
rise—full physics models are still
under development.
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San Francisco hourly sea level
GFDL CM2.1 historical (20c3m) and climate change (SRESA2) simulations
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Under projected global
warming, sea level rises
considerably by 2100.

As estimated from
GFDL A2 using

Rahmstorf(2007)
SLR is approximately 0.9m.

High sea level events,
exceeding high threshold
occur increasingly often and
persist for longer durations.



The Satellite Data 1992-2009
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Southern Oscillation Index
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strong cyclonic atmospheric circulation patterns during
highest San Francisco sea level winters (non-tide residuals)
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during high sea levels, the sea 1s often not quiescent
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San Franmsco
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Highest California
coastal wind waves
occur in winter months
with extensive North
Pacific Low pressure
Patterns.

Long period waves
require extensive
basin wide low
pressure and
westerly winds
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Hovemoller diagram,
two large El Nino’ s--
North Pacific Basin

fills w winter cyclones

both years had
persistent storminess
and a long, extended
storm season

cyclones tracked from
Asia to West Coast in
5-6days,; storm track
was zonal and extended

far south.
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Two La Nina years

In contrast to the
El Nino cases, the
North Pacific Basin

was much less
active. Propagation
speed of cyclones
and anticyclones
is still approx
5-6 days to traverse
the basin at 40N
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January 12-21 1983

500mb
Geopotential Height
Anomalies

Commencement
of a remarkable
North Pacific
Winter storm
season

65N

60N 1
55N 1
SON 1
45N 1
40N 1
35N *7
30N 1

25N

120€

NOAA—CIRES/Climate Diagnostics Center

~

Y

—

- qs;
-
>

£

r
4

‘\A

~

~

NOAA—CIRES/Climate Diagnostics Center

-’-’ '-(‘—

o

Jan 21

140E

—-300

160E

-200

—-100




SLP 1024
(mb) QQZWWWWW

Wnd 5p

Sed 1o
(m/s)

10
Wind 07
Vector -
(mls) 40—
4 Wind vectors smoothed usind'a 12 hour average. -
20 Wind direction from "end" of bar to the zero line. : 1 982 83
. T 1 I 1] 1 I 1 1] l ] 1 T T 1

|
Nov Dec Jan Feb Mar Apr

1

992

Wnd 20

Spd 49
(m/s) 0

10

(SmL:) 1024 WWHWMW v'v/\/\/\f\f

Wind 01 R
Vector .
(m/s) -10 —

Wind direction from "end" of bar to the zero line.
‘20 T | ] l T T I T T I T T I T

Nov Dec Jan Feb Mar Apr

7 Wind vectors smoothed using a 12 hour average.
1998-99.

NOAA Buoy 46014
(~39N 123W)

1982-1983
lower LOWs
higher winds
more westerlies
more southerlies

than
1998-1999

strong southerly winds
+ low barometric pressure
favor high sea levels
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Fig. 3 Color contour plots of the 99th-percentile trend (percent per year).

99th percentile wind speed (1991-2008)
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TRENDS Hy, (% CLIMATOLOGY) WINTER (NOV-MARCH)
Note: Hoo = 99 ptile Hg; NCEP RA FOR 1970-1999; A2 SIMULATIONS 2000-01 to 2098-99

Shading (negative) and hatching (positive) significant trends @ 99% (t-test)
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? erthe last 100yrs, nearly same as

yater to global ocean.
' ext seve

eading t A-coastﬁ damage " osion during the next few decades.

The key to understaqdmgﬂ%‘e coastal effects of future SLR is to measure the wave-
= driven beach and cliff erosion and flooding _today so we can construct data-based
models of shoreline retreat. What is needed is repeated LIDAR beach and cliff

retreat monitoring, along Wlth wave data ( CDIP) to connect-the measured changes

with the waves.
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Storm runoff will exacerbate high sea levels in estuaries—in particular the San
Francisco Bay/Delta




